
Active Learning under Pool Set Distribution Shift and Noisy Data 
Andreas Kirsch, Tom Rainforth, Yarin Gal, OATML, University of Oxford

Experiment Results 
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Bayesian: Active Learning 

The Bayesian model parameters  come with 
prior distribution , and the training set 

 induces a posterior distribution 
.  


The predictive distribution for a sample   is 
obtained by marginalizing: 




The training set is extended with selected 
points  from the unlabeled pool set, 
which are then labeled by an oracle.


To decide which points to acquire, an 
acquisition function   
jointly scores unlabeled candidates from the 
pool set. The highest scoring set of samples of 
a predetermined acquisition batch size is 
acquired in each acquisition round.
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Problem Setting 
Usually, active learning is considered without distribution shifts, so what if 
the pool set distribution does not match the test set distribution, which we 
care about during evaluation?


What if we allow ? This covers class imbalances, noisy 
labels and samples, but also junk data which is out-of-distribution.


Using an Evaluation Set 
We assume we have access to an unlabeled evaluation set 

 drawn from .


As the evaluation set is unlabelled, it does not need to be counted 
towards the number of required acquisitions, unlike labelled validation 
sets. The latter issue is commonly ignored in Active Learning papers. 

Motivation 
Active Learning approaches try to learn the optimal parameters for the 
pool set. For example, BALD maximizes the information gain 

 for an acquisition candidate  and the Bayesian 
model parameters. However, we don't want to learn the full model, we 
only want to make good predictions for the test set, using the 
evaluation set as proxy.

ppool(x) ≠ ptest(x)

𝓓eval = {xeval
1 , …, xeval} ptest(x)
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Use Cases for AL under Distribution Shift 
It is often easy to obtain large amounts of unlabeled data for a pool set. 
For example, by crawling web pages, or using photos uploaded by 
users.


However, the task for which the data is needed and labelled is usually 
very specific and the actual data that will be queried will follow a 
different distribution.


Even when the distribution of the available data and the task 
distribution nominally match, it is possible that the pool set will contain 
some junk data or very noisy data.


Both are use-cases for Active Learning under Distribution Shift.

Idea: EPIG 
Instead of maximizing the information gain in regards to the model 
parameters, we focus on maximizing the information gain in regards to 
the evaluation set, the Expected Predictive Information Gain, which 
is also known as predictive information in RL:


 


In the paper, we relate this to generalization loss (when training with a 
cross-entropy objective). 

Implementation 
Given the details in the box on the right, we use EPIG-BALD with 
BNNs to approximate EPIG, which is the difference between two 
BALD scores, one for a model trained on the current training set, and 
one for a model trained on the current training set and the other 
model’s predictions for the evaluation set (self-distillation).


The difference is high for samples which have low information gain 
(low epistemic uncertainty) for a model also trained with the evaluation 
set and high information gain (high epistemic uncertainty) for the 
current model: unseen samples which are close to the evaluation set.


I [Yeval; Yacq |Xeval, xacq, 𝓓train] =
= 𝔼p(xeval)I [Yeval; Yacq |xeval, xacq, 𝓓train] .

Additional Relaxations and EPIG-BALD 
However, EPIG is expensive to calculate. Instead, we minimize a 
relaxation (leaving out ):


,


which we can expand to:





We find that we can approximate the second term by training 
with self-distillation using the predictions from a model trained 
on just the training set for the evaluation set (motivated in the 
paper). Alternatively, an ensemble can trained for different sets 
of predicted labels for the evaluation set.


However, this all is not sufficient in itself yet for Bayesian neural 
networks that use approximate posteriors because for 
approximations  and some 

, we potentially have:


,


which violates an independence assumption.


Hence, we introduce EPIG-BALD, which does not make this 
independence assumption:





EPIG-BALD and EPIG are identical for exact posteriors.
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q1(ω) ≈ p(ω ∣ 𝒟train)
q2(ω) ≈ p(ω ∣ …, 𝒟train)

H (q1(Y ∣ x, Ω)) ≠ H (q2(Y ∣ x, Ω))

I [Yeval
1 , …, Yeval

n ; Yacq; Ω ∣ xeval
1 , …, xeval

n , xacq] =

= I [Yacq; Ω ∣ xacq] − I [Yacq; Ω ∣ xacq, Yeval
1 , …, Yeval

n , xeval
1 , …, xeval

n ]

Limitations & Plans 
We need to run plenty of additional ablations on all the 
approximations we have made to examine the trade-offs.


We need to run additional experiments under different distribution 
shifts. The results on MNIST+FMNIST and CIFAR-10+SVHN show 
that model architectures with their specific inductive biases seem to 
assign higher epistemic uncertainty to specific datasets regardless of 
what the model has been trained on.


Finally, it is not clear how big the evaluation set has to be to be useful 
and not lead not overfitting.
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